782 Chapter 17 Database Machines

database machines intelligent memory processor per device
backend software processor per track multiprocessor and cache
backend computer cellular logic device special hardware
associative memory : processor per surface

Bibliographic Notes

With the development of database management systems, the load placed on the system of
second and third generation computers far exceeded their capabilities, which led to the concept
of database computers. One of the first reports of a prototype development of backend database
computers was the XDMS project of Bell Labs (Cana 74). Earlier, Slotnick (Slot 70) had
proposed a logic-per-track storage device. The cellular logic device is a generalization of
Slotnick’s logic-per-track concept. Examples of this approach are the CASSM (Su 79), the
RAP (Schu 78), and the RARES (Lin 76) projects. The processor-per-surface approach was
used in the DBC project (Bane 78). DBC/1012 (Tera a) is an example of the processor-per-
surface approach which, with the distribution of data on different: AMPs, achieves the effi-
ciency of the MPC approach. The DIRECT project (Dewi 81) is another example of the MPC
approach. More recent systems are described in (Hsia 83), (MDBS); (Fish 84), (Jasmin); (Kits
85), (Grace); and (Dewi 86), (GAMMA).

(Mary 80) presents a tutorial on the software backend computer approach. With the in-
creasing use of the relational model, there was an increase in emphasis on developing systems
to improve the performance of the relational model in hardware (Babb 79), (Bane 78), (Dewi
81), (Lin 76), (Smit 79). The use of content-addressable memories is not cost effective and
they remain controversial (Hawt 81). Commercial database machines continue to use conven-
tional rotating memories.

Textbook-oriented discussions of database computers are presented in (Hsia 83) and
(Su 88). :

Bibliography

(Babb 79) E. Babb, ‘‘Implementing a Relational Database by Means of a Specialized Hardware,”” ACM Trans.

on Database Systems 4(1), March 1979, pp. 1-29.

(Bane 78) J. Banerjee, D. K. Hsiao, & R. 1. Baum, ‘‘Concepts and Capabilities of a Database Computer,”’

ACM Trans. on Database Systems 3(4), 1978, pp. 347-384.

(Berr 79) P. B. Berra & E. Oliver, ““The Role of the Associative Array Processor in Database Machine

Architecture,”” Computers 12(3), March 1979, pp. 53-63.

(Cana 74) R. H. Canady, R. D. Harison, E. L. Ivie, J. L. Ryder, [. A. Wehr, *‘A Backend Computer for

Database Management,”” Comm. of ACM 17(10), October 1974, pp. 575-582.

(Date 83) C.'J. Date, An Introduction to Database systems, vol. 2. Reading, Ma: Addison-Wesley, 1983.
(Dewi 81) D. J. DeWitt, **Direct—A Multiprocessor Organization for Supporting the Relational Database

Management Systems,’* IEEE Trans. on Computers C-28, June 1979, pp. 395--406.

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, & M. Muralikrishna,

“GAMMA: A Performance Dataflow Database M_achinc,'f Proc. of the 12th International
Conf. On Very Large Data-Bases, Kyoto, Japan, August 1986, pp. 315-344.

17.4 Summary 781

17.3.2

System Facilities of the DBC/1012

17.4

Fre"DBC/1012 provides a number of system facilities for database security, integrity,
and concurrency control.

Security is implemented by means of a session protocol. A user is required to
log on to the DBC/1012 to establish a session. The logon procedure identifies the
user (or application program) and provides an account number and a password. A
session is established once the logon parameters are accepted. A session ends when
the user logs off. Unauthorized access or an attempt to access outside a session is
denied and appropriately reported.

Concurrency is implemented by locking. The locking granularity could be the
entire database, a relation, or a tuple. There are four modes of locking provided by
DBC/1012: exclusive, write, read, and access. The access lock can be used by users
who are not concerned with data consistency. The degree of concurrency is increased
since the access lock allows read operations to be executed simultaneously against a
data item locked in the write mode.

Recovery is implemented by the use of transient and permanent journals. The
transient journal is a log of updates to the database. The log entry consist of the
transaction identification and the before image or the modified data items. The tran-
sient journal is used to undo a single transaction error.

The permanent journal is an optional second method of recovery implemented
in the DBC/1012. The DBA decides to log either the before image or the after image
of data items in the log of the permanent journal. The log could be single or double;
in the latter case redundancy in the log is provided by recording two copies of the
before or after image.

Archiving (dump) is performed by making copies of the database and permanent
journal at regular intervals. Checkpoint facility is part of the permanent journaling
feature. .

Recovery from failures is achieved by rollback or roll forward optionally to a
specified checkpoint.

Summary

In the traditional approach te database systems, the DBMS runs on the same com-
puter as the user programs. The data in this approach is stored on conventional ro-
tating memories. It is necessary to move the data to the central processing unit for
processing and to determine what portion of it is needed to respond to a user’s query.
We discussed a number of approaches that have been used to place some of the
database management load on a separate system. In some of these approaches, some
form of computing capability is provided near the data, which avoids moving super-
fluous data to the main processing unit. The processor per track or cellular logic, the
processor per surface, the processor per device, and the multiprocessors and cache
are attempts to provide processing close to the data. We also described one instance
of a commercially available special-purpose computer that handles the database man-
agement functions.

780

Chapter 17 Database Machines

17.3.1

owner and creator of these relations, indexes to be maintained, a list of authorized
users and their access rights. The scheme is maintained in the DD/D.

Operation of the DBC/1012

The database system in the DBC/1012 consists of the following components: session
control, dispatcher, and database manager. Each IFP and COP is responsible for the
first two components and in addition these processors interface with the host systems.
The database manager is implemented on each AMP and is responsible for providing
the transformation from the logical database organization to the physical level; the
data is stored on the DSUs. The access aid used by the DBM is a two-level index
consisting of a master index and a cylinder index; binary search is used on these
indexes.
The user defines and manipulates the database using the following facilities:

® In DBC/SQL, the Teradata query language. This is the facility used to define
and manipulate the database. Thus, the user can define relations or views on
existing relations as well modify them using statements in DBC/SQL.
Statements in DBC/SQL allow the user to control access to the database by
establishing users and their access profiles.

® Interactively, by statements in the Interactive TEradata Query (ITEQ) language.
This includes functions for retrieving metadata about the database; entering,
editing, and executing DBC/SQL statements; and specifying the format of the
output.

® In a batch mode, using a facility provided by the Batch TEradata Query
(BTEQ) language, wherein a number of DBC/SQL statements along with BTEQ
batch commands can be executed.

e By DBC/SQL statements included in application programs in a high-level
language. These statements are converted by a language preprocessor into calls
to CLI routines. After the compilation of the source program, these CLI
routines are link-edited with the object code to generate a load module reaay for
execution. It is also possible to dynamically load the CLI routines at run time.
At execution time, the CLI service routines generate a query request, which is
communicated by a UTC routine to the TDP.

® In a natural query language such as INTELLECT or a fourth-generation
language such as NOMAD.

e By using calls to CLI routines in a high-level language.
® By using a data directory/dictionary facility to access the meta information
regarding the database objects.

*The user’s query requests are communicated to the TDP via UTC routines by
the CLI service routines. The TDP is responsible for managing the communication
between the application program or the user and the DBC/1012. On receiving a query
request, the TDP creates a message for the IFP, which is communicated via the host
to DBC/1012 interface. The CLI routines are also responsible for receiving the re-
sponse to the DBC/SQL statemenis from the DBC, via the TDP, and forwarding it
to the application program or user that originated the request.

17.3 DBC/1012 Overview and Features 777

Figure 17.10 Interface processor (adapted from [Tera a]).

I Host system I

—
Interface processor |~
Memory
- Control processor . |- —|- ~ ~ { <~ High-speed bus
Internal | bus
Ynet A interface " Ynet B interface
and buffers) : and buffers
\J Yy
Ynet A . Ynet B

Session control involves processing the logon and logoff requests from the host.
The messages to and from the TDP in the host are under the control of the host
interface.

A DBC/SQL request from the host is semantically interpreted by the parser.
This interpretation may need a reference to the system information stored in the data
dictionary/directory to resolve symbolic references and determine integrity con-
straints. The parser generates a number of work steps required to process the request
and sends these to the dispatcher.

The dispatcher controls the execution of work steps and also performs the as-
sembly of the response to be sent to the host via a response control subsystem. The
dispatcher schedules the execution of these work steps and passes them to the Ynet
interface, which in turn sends them over the Ynet to one or more AMPs. The dis-
patcher is also responsible for monitoring the status of the work steps in the AMPS
and interacting with the response control. The response. control is responsible for the
assembly and transmission of the response for a request from the host.

AMPs and DSUs

The access module processor (Figure 17.11) is very similar to the IFP and uses some
of the same components. The AMPs receive requests for database access over the
Ynet and respond by sending the required information back to the requesting IFP or
COP over the Ynet. Eich AMP is connected to both Ynets and could have a maxi-
mum of two data storage units. The database manager (DBM) subsystem is resident
on each AMP in the DBC/1012 and is responsible for executing the functions of

776

Chapter 17 Database Machines

Figure 17.9

Basic configuration of the Ynet (adapted from [Tera a)).

IFP

@ Level 1 node
ﬁa Level 2 nodes

Level 3 nodes

T cop

4 10 Primary data

3 9 Secondary data
(backup)

number of work steps to respond to this request. These work steps are encoded into
data blocks that travel up the hierarchy from the IFP processor level to the node at
level 3, and then down to one or more AMPs. The ‘downward transmission uses a
broadcast mode; the upward transmission is controlled by control information asso-
ciated with the data block. Data retrieved by the AMPs travels up the network.
Contention logic in the network is used to sort the data moving up from the AMPs.
The control information in the data block is also used to sequence the arrival of
blocks from AMPs to a given IFP in a certain order and achieve merge/sorting of the
relevant data.

The following types of communication are provided by the Ynet: between any
two processors; from one processor to a group of processors; from a group of pro-
cessors to a single processor; or between processors to synchronize their operations
on data. A Ynet can be expanded to support up to 968 processors.

The IFP (Figure 17.10) interfaces both with the host and the Ynets and manages the
traffic between the two. The number of IFPs depends on this traffic and can be
adjusted to match it. Each IFP is connected to both Ynets. The functions imple-
mented in the IFPs are the following: host interface, session control, parser, dis-
patcher, and Ynet interface. These functions are implemented in hardware or soft-
ware and are briefly described below.

The Ynet interface in the IFP controls the transmission of messages to and the
receipt of responses from the AMPS. A message may be transmitted to a single AMP

or to a group of them

17.2 Database Machine Taxonomy 773

Figure 17.6 Moving head disk with a single read/write head and processor per surface.

A <> surface 0
am . Track _I
0 .m 0123... : surface 1
P m ’l‘ suface2
° s
am VY g surface 2i-2
¢ __ka o
i M 0123. T md f
o ® - surface 2i-1
" ': - r surface 2i
__ Track o
0123... t
N t
e [+ .
Paua b ;
am @ <« n surface 2n-2
n. _ Track I
n-1 :: 0123.... surface 2n-1
P R e s
n-1 m
e
L J
Figure 17.7 Multiprocessor and cache system.
H =)
: e
] n
t [38
V] | 14
m 0 ;
P n
u n | Disk |]
t e Controller
e (4
r t
i
o
n

E“ E

[~o0
!
I

772

Chapter 17 Database Machines

Figure 17.5

Fixed-head disk with read/write head and processor per track.

17.2.3

[Po | [Poms |
m__PTTTY suace
0 : * * L * * surface 1
l Py I ‘le-l l “: ’: surface 2

"I am un

surface 2i-2
- trackI—I—I 0
o

-

s
: m-} surface 2i-1
p r surface 2i
o o
e Ik
t £
t
[Fan] [Fusmi]
o
arm T T T T T n » surface 2n-2
n-l L * L * L surface 2n-1
[PZ!I-IO l |P2n~lm-1 l

The processor-per-device approach is an attempt to further reduce the number
of processing elements associated with the storage, and hence the cost. In this
scheme there is a single processor associated with each storage device. The processor
acts as a filter between the host computer and the device. Indexes are required to
reduce the number of passes and the amount of data actually processed by this filter
processor.

The multiprocessor and cache scheme (Figure 17.7) is an attempt to optimize
the cost-performance factor by allowing the filter processors to be assigned to process
the data from any one of a number of storage devices, or from a number of different
tracks or cells of a single device. The data to be processed is placed in one of the n
high-speed memory caches, there being m filter processors. The interconnection net-
work is used to connect any one of the m processors to any of the n caches. Up to
m caches can be processed simultaneously; the data in these caches could be from
distinct devices or from the same device. With n > m, some of the empty caches
could be filled while m caches are being processed and buffer the difference between
the processing rate and the device access rate.

Special Hardware Approach

In the special hardware approach, instead of using a conventional computer as the
engine in the backend ior running the database management system, a specially de-

17.2 Database Machine Taxonomy 771

Figure 17.4 Associative memory approach'.

Host computer

h!elligem
device
- -controller

17.1, running the application as well as the DBMS, or it could be a dedicated back-
end computer. .

The processing capability associated with the secondary memory is provided by
VLSI-based microprocessors and hence is cost effective. The storage device could
be electromechanical in the form of rotating disks or drums, or it could be nonme-
chanical, e.g., magnetic bubble memories or charge-coupled devices. (In the follow-
ing discussions, we assume that the storage devices are electromechanical; however,
the same concepts can be applied to the nonmechanical devices.) The processing
capability may be associated with a storage device in one of the following manners:
processor per track of a fixed-head type storage device; processor per surface of a
moving-head type storage device; processor per storage device; or multiprocessor and
cache approach.

In the processor-per-track approach, a processor is associated with each track
of the secondary storage device, the latter being a fixed-head disk or drum or other
such device (Figure 17.5). This type of structure is also called a cellular logic de-
vice, since logic is associated with each cell of memory. Data from the track is
processed by the associated processor and data from all tracks can be processed
simultaneously. Thus, the entire contents of the storage device can be processed in
one pass, which in the case of a rotating storage device is a single revolution. Since
all data can be processed in a single pass, indexes are not needed.

The disadvantage of the processor-per-track scheme is that the data from all
tracks of a single device is not necessarily required and the concurrent processing of
the irrelevant data is unproductive. The cost of this type of storage device is high.
However, with the ultralarge-scale integration (ULSI) of logic components, the cost
is expected to decrease.

The processor-per-surface method is an attempt to associate processing power
with each read/write.head of a moving-head type secondary storage device (Figure
17.6). The amount of data that can be processed per pass by each processor is the
same as in the processor-per-track approach; however, to process all the data from
the storage device would take m passes or revolutions, where m is the number of
tracks. per surface. In the case of mechanical devices such as disks and drums, the
movement of the head from track to track takes a finite amount of time and this will
have to be accounted for in the total time required to process the data from the
device. If the storage device is nonmechanical, the switching of the cells to be pro-
cessed can be done at much faster electronic rates. To reduce the number of passes,
indexes are necessary for these storage devices.

770

Chapter 17

Database Machines

Figure 17.3 Multiple backend computers serving multiple hosts.

Host. Host
Application Application
Operating system Operating system
Interface Interface

Interconnection network]
i Backend .
Interface and computers Imerfacg and "
DBMS . DBMS .
operating system operating system '
Disk K Disk
controlier controller

17.2.2

tribution of data on the multiple backend computers; the maintenance of the directory
containing this information about the data distribution; if such a directory is not
maintained, then the overhead for determining the location of required data; consis-
tency enforcement if data is replicated.

Processor A.ésociated with Memory or Intelligent Memory Approach

In the intelligent memory approach (see Figure 17.4), sufficient processing logic is
associated with the secondary memory so that data can be processed before being
transmitted to the host processor. The host runs the database management system. If
sufficient processing capability is associated with the secondary storage device con-
troller, it can intercept data from the secondary storage device to determine its use-
fulness. There is no need to move superfluous data to the host system running the
database management system. The host could be a conventional system as in Figure

Figure 17.2

17.2 Database Machine Taxonomy 769

cation programs. However, since the overall system has more componenis than a
conventional system, the likelihood of failure is increased.

A dedicated database machine can be used to support the database operations
for a number of host computers and/or workstations, as shown in Figure 17.2. Such
an approach, where a number of hosts share one or more backend computers, permits
cost-effective sharing of both the data and the database management functions. How-
ever, unless the dedicated database machine has the required capacity to handle this
load, it will create a bottleneck. Furthermore, failure of this dedicated system would
bring the operations of these hosts to a halt.

An alternative solution to relieve the bottleneck and to increase the reliability of
the backend system is to incorporate multiple dedicated database machines in the
database management functions, as shown in Figure 17.3. In this variation of the
backend approach, a number of backend computers can be used to handle a very
large database,. the latter being distributed to optimize performance by allowing par-
allel retrieval and processing of data required simultaneously. However, with this
scheme, the problems encountered are the following: the need to determine the dis-

Backend database computef approach.

Host Host
~ Application Application '
Operating system - " Operating system
L, Interface ' - Interface

Direct connection '
or a communication
link
Backend

Interface and ’ Computer

DBMS .

‘Disk
controller

768

Chapter 17 Database Machines

17.2.1

attempted. The references to some of these systems are given in the bibliographic
notes. These approaches can be classified as one of the following: backend software
approach; processor associated with memory or intelligent memory approach; special
hardware approach. We briefly describe these approaches in the following sections.

Backend Software Approach

In the backend software approach, sometimes called the backend computer ap-
proach, the host computer where the applications are located is attached to a dedi-
cated general-purpose computer and a conventional database management system
runs on this backend computer. This dedicated backend computer is responsible for
carrying out the database functions of locating and retrieving the required data as
well as ensuring security, enforcing consistency criteria, and providing for recovery
operations. This releases the host computer from database management functions.
Superior performance can be achieved by parallel processing of the application pro-
grams and the database operations in distinct processors. A single backend computer
can be attached to a single host or a number of hosts, not necessarily identical, can
share a single backend computer.

A database request from an application program in the host computer is inter-
cepted by special interface software, which sends the request to the dedicated back-
end database machine. The backend machine performs the required data access and
processing operations to derive the response for the request and this response is sent
back to the host. .

The backend machine can be a conventional computer dedicated to running a
conventional database management system. It can also be a system consisting of one
or more specialized processors using traditional secondary storage devices or associa-
tive memories of one or more types. Associative memory has logic associated with
each word or each bit of the memory. The logic is used to simultaneously examine
the contents of the entire memory. Matching words are flagged and could be rapidly
located for subsequent processing.

Regardless of the nature of the backend system, it is dedicated to performing
the database functions in an optimal manner to achieve cost-effective performance.
Higher performance is achieved by the parallelism inherent in such a system.

There are certain advantages and disadvantages in dedicating a separate system
for the database functions. We already mentioned the higher performance attainable
with such a system as a consequence of parallelism and specialization. The perfor-
marce here is measured in terms of the overall system throughput and not necessarily
the response for a single query. The response to a query in a backend approach
involves an overhead'in the form of comniunication between the host and the back-
end computers. As a result, the response time for a query is likely to be worse in the
backend approach compared to the conventional approach where communication be-
tween computers is not required.

In the backend approach, since the data is under the control of a dedicated
system, data security is enhanced. This is because no user has direct access to the
backend system, all requests being handled through the host interface. Also, since
no application programs run on the dedicated system, the reliability of the database
system is improved; there is freedom from crashes that occur due to incorrect appli-

17.2 Database. Machine Taxonomy , 767

T e

In this chapter we discuss a number of approaches used to relieve the main computer
system of the burden of running the database management system and to handle the
superfluous data not required for deriving the response to a user’s query.

Iintroduction

17.2

In the traditional approach to database systems (see Figure 17.1), the data is stored
on secondary storage devices and the ability to perform any logical or arithmetic
computing operations is limited to the central processor. Data has to be moved from
the secondary storage devices to the main memory attached to the central processor.
Once the data is transferred to the main memory, the processor can access it and
determine if the data is useful. Thus it is likely that a large quantity of superfluous
data will also be retrieved and processed. It has been estirhated that on the average,
only 10% of the retrieved data is found to be pertinent. The utilization of indexes is
one approach used to reduce this wasteful movement and processing of data. How-
ever, the indexes themselves take up considerable storage space and generate sub-
stantial traffic on the input/output channels as well as a heavy processing load on the
processor.

Database Machine Taxonomy

Figure 17.1

The approach taken in database machines is to offload the database management
functions onto a special processor and optionally add some level of computing ca-
pability closer to the data. The special processor relieves the main computer system
of the task of managing the database; the extra level of computing capability makes
it feasible to decide whether a given set of data will be useful in the evaluation of a
query without having to transfer the data to a central processing unit.

A number of approaches to moving the computing power closer to the data have
been proposed, and experimental systems for some of these proposals have been

Conventional approach.

Openting | 10 /o Disk
system subsystem channel controller
DBMS
_Applications

|

Chapier

17

Détabase
Machines

Contents

174
17.2

17.3

Introduction

Database Machine Taxonomy

1721 Backend Software Approach

17.22 Processor Associated with Memory or Intelligent
Memory Approach

17.23 Special Hardware Approach

DBC/1012 Overview and Features
Host System Communication Interface
Ynet
IFP
AMPs and DSUs
COP and MTPD
System Console and Printer
Data Dictionary/Directory
17.3.1 Operation of the DBC/1012
17.32 System Facilities of the DBC/1012

169 Summary 763

(East 86) G. M. Eastman, “‘Three Uses of Object-Oriented Databases to Model Engineering Systems,’’
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986, pp.
215-216.

(Find 79) N. V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computers. New
York: Academic Press, 1979.

(Fish 87) D. H. Fishman, et al., *‘Overview of the IRIS DBMS,”” ACM TOOIS 5(1), January 1987, pp. 48-69.
(Fish 88) D. H. Fishman, et al., Overview of the IRIS DBMS. Palo Alta, CA: 1988. H-P Labs, 1988.

(Fros 86) R. Frost, Introduction to Knowledge Base Systems. New York: Macmillan, 1986.

(Gall 78) H. Gallaire & J. Minker, Logic and Databases. New York: Plenum Press, 1978.

(Gall 84) H. Gallaire, J. Minker, & J.-M. Nicolas, ‘‘Logic and Databases: A Deductive Approach,’’ ACM
Computing Survey 16(2), June 1984, pp. 153-185.

(Gold 83) A. Goldberg & D. Robson, Smalltalk-80: The Language and Its Implementation. Reading, MA:
Addison-Wesley, 1983.

(Goya 87) P. Goyal, T. S. Narayanan, Y. Z. Qu, & F. Sadri, ‘‘Requirements for an Object-Based Integrated
Systems Environment,”* Technical Report CSD-87-007, Dept. of Computer Science,
Concordia University, 1987.

(Gray 84) P. Gray, Logic, Algebra and Databases. Chichester, England: Ellis Horwood, 1984.

(Hamm 81) M. Hammer & D. McLeod, ‘‘Database Description in SDM: A Semantic Database Model,”” ACM
Transactions on Database Systems 6(3), 1981, pp. 351-386.

(Hard 86) T. Harder, ‘‘New Approaches to Object Processing-in Engineering Databases,’ Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, p. 217.

(Huds 86) S. E. Hudson & R. King, “‘CACTIS: A Database System for Specifying Functionally Defined Data,”
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986, pp.
26-37.

(Isra 86) D. Israel, ‘‘Al Knowledge Bases and Databases,” in M. L. Brodie & J. Mylopoulous, eds., On
Knowledge Base Management Systems: Integrating Artificial Intelligence and Database -
Technologies. New York: Springer-Verlag, 1986.

(Jone 79a) A. K. Jones, ‘“The Object Model: A Conceptual Tool for.Structured Software,”” in R. Bayer, R. M.
Graham, & G. Seagmuller), eds., Operating Systems: An Advanced Course. NY: Springer-
Verlag, 1979, pp. 8-18.

(Jone 79b) A. K. Jones, R. J. Chandler, I. E. Durham, K. Schwans, & S. Vegdahl, *‘StarOS: Multiprocessor
Operating System for Support of Task Forces,”” Proceedings 7th ACM Symposium on
Operating System Principles, Dec. 1979, pp. 117-129.

(Jones 86) M. B. Jones & R. F. Rashid, ‘‘Mach and Matchmaker: Kernel and Language Support for Object-
Oriented Distributed Systems,’* Proceedings, OOPSLA 86, Sept. 1986, pp. 67-77.

(Katz 86) R. H. Katz, E. Chang, & R. Bhateja, ‘*Version Modeling Concepts for Computer-Aided Design
Databases,”’ Proceedings, ACM SIGMOD °86, May 1986, pp. 379-386.

(Kers 86) L. Ketschberg, ed., Expert Database Systems: Proc. from the First International Workshop. Menlo
Park, CA: Benjamin/Cummings, 1986.

(Keta 86) M. A. Ketabchi, *‘Object-Oriented Data Models and Management of CAD Databases,”” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 223-224.

(Khos 86) S. Khoshafian & G. P. Copeland *‘Object Identity,”” Proceedings, OOPSLA ‘86, Sept. 1986, pp.
406-415.

(Kim 88) W. Kim & F. Lochovsky, Object-Oriented Ccncepts and Databases. Reading, MA: Addison-Wesley
1988.

(Know 83) Specihl isSue on knowledge representation. IEEE Computer 16(10), October 1983.

(Xorf 66) R. R. Korfhage, Logic and Algorithms. New York: John Wiley, 1966.

(Kowa 79) R. Kowalski, Logic for Problem Solving. New York: North-Holland, 1979.

(Kuip 75) B. J. Kuipers, ‘‘A Frame for Frames: Representing Knowledge for Recognition,”’ in-D. G. Bobrow

762 Chepter 16 Current Topics in Database Research

(Barr 81) A. Barr & E. A. Feigenbaum eds., The Handbook of Artificial Intelligence, vol. 1. Los Alatos CA.:
William Kaufman, 1981.

(Birt 73) G. M. Birtwhistle, O. J. Dahl, B. Myrhaug, & K. Nygaard, SIMULA Begin. Auerbach Publishers,
1973. ’

(Blac 85) A. P. Black, ‘‘Supporting Distributed Applications: Experience with Eden,’’ Proceedings 10th ACM
Symposium on Operating System Principles, 1985, pp. 181-193.

(Bobr 75) D. G. Bobrow & A. Collins, eds., Representation and Understanding: Studies in Cognitive Science.
New York: Academic Press, 1975.

(Brac 83) R. J. Brachman, ‘‘What IS-A is and Isn’t: An Analysis of Taxonomic Links in Semantic Network,"’
IEEE Computer 16(10), 1983.

(Brac 86) R. J. Brachman & H. J. Levesque, ‘‘What Makes a Knowledge Base Knowledgeable? A View of
Databases from the Knowledge Level,” in L. Kerschberg, ed., Expert Database Systems:
Proceedings from the First International Workshop. Menlo Park, CA: Benjamin/Cummings,
1986, pp. 69-78.

(Brod 84) M. L. Brodie, J. Mylopoulos, & J. W. Schmidt, eds., On Conceptual Modelling: Perspective from
Artificial Intelligence, Databases and Programming Languages. New York: Springer-Verlag
1986.

(Brod 86a) M. L. Brodie & J. Mylopoulos, eds., On Knowledge Base Management Systems: Integrating
Artificial Intelligence and Database Technologies. New York: Springer-Verlag, 1986.

(Brod 86b) M. L. Brodie, R. Balzer, G. Wiederhold, R. Brachman, & J. Mylopoulos, ‘‘Knowledge Base
Management Systems: Discussions from the Working Group”’ in L. Kerschberg, ed., Expert
Database Systems: Proceedings from the First International Workshop. Menlo Park, CA:
Benjamin/Cummings, 1986, pp. 19-23.

(Brod 86c) M. L. Brodie & J. Mylopoulos, ‘‘Knowledge Bases vs. Databases,’’ in M. L. Bredie, & J.
Mylopoulos, eds., On Knowledge Base Management Systems: Integrating Artificial
Intelligence and Database Téchnologies. New York: Springer-Verlag, 1986, pp. 83--86.

(Card 85) L. Cardelli & P. Wegner, “‘On Understanding Types, Data Abstraction, and Polymorphism,’’
Computing Surveys 17(4), December 1985, pp. 471-522.

(Care 86) M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. E. Richardson, & E. J.
Shekita, ‘“The Architecture of the EXODUS Extensible DBMS,’ Proceedings, International
Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 52-65.

(Chen 76) P. P. Chen, *‘The Entity-Relationship Model—Towards a Unified View of Data,”” ACM Transactions
on Database Systems 1(1), March 1976, pp. 9-36.

(Chri 86) S. Christodoulakis, F. Ho, & M. Theodoridou, ‘‘The Multimedia Object Presentation Manager of
MINOS: Symmetric Approach,” Proceedings, ACM SIGMOD ’86, May 1986, pp- 295-
310. ‘

(Cope 84) G. Copeland & D. Maier, ‘‘Making Smalktalk a Data Base System,”’ Proceedings, ACM SIGMOD
"84, June 1984, pB. 316-325.

(Dahl 66) O. J. Dahi & K. Nygaard, “‘SIMULA, an ALGOL Bases Simulation Language,”’ Comm. of the ACM
9(9), September 1966, pp. 671-678.

(Danf 88) S. Danforth, & C. Tomlinson, ‘‘Type Theories and Object-Oriented Programming,”” ACM Computing
Surveys 20(1), March 1988, pp. 29-72.

(Dasg 85) P. Dasgupta, R. J. LeBlanc, & E. Spafford, ““The Clouds Project: Designing and Implementing a
Fault Tolerant, Distributed Operating System,”’ Technical Report GIT-ICS 85/28, Georgia
Institute of Technology, School of lnfo\rmation and Computer Science, 1985.

(Dasg 86) P. Dasgupta, ‘‘A Probe-Based Monitoring Scheme for an Object-Oriented Distributed Operating
System,” Proceedings, OOPSLA °86, September 1986, pp. 57-66.

(Ditt 86) K. R. Dittrich, ‘‘Object-Oriented Database Systems: The Notion and the Issues,”’ Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 2—4.

(Dixo 89) G. N. Dixon, G. D. Parrington, S. K. Shrivastaua and S. M. Wheater, ‘‘The Treatment of Persistent
Objects in'Arjuna,”* The Computer Journal, 32(4); August 1989, pp. 323-332.

16.9 Summary 759

an object is determined by the message to which it responds; this set of operations is
called the object’s message protocol. Such a set of operations for each message is
called a method and determines the response generated by the object. The collection
of a group of identical objects into a ¢lass allows the sharing of common methods.
In the object approach, inheritance is used to allow different objects to share attri-
butes and methods.
Along with the lack of a clear, well-defined and accepted object model there is
a lack of uniformity in the concept of an object-oriented database system. Object
database can be classed as either an extension to an existing system or as an object-
oriented DBMS (OODBMS) wherein the data model supports the object approach.

knowledge base management
system (KBMS)

reasoning facility

deductive reasoning

inductive reasoning

abductive reasoning

explanation facility

knowledge representation
scheme

exception-handling features

knowledge independence

robust

metaknowledge

semantic network

property inheritance mechanism

override

proposition

propositional logic

propositional calculus

modus ponens

chain rule

reductio ad absurdum

predicate

sorts

function

first-order logic
predicate calculus

Exercises

first-order predicate calculus

Horn clause

closed world assumption
(CWA)

unique name assumption
(UNA)

domain closure assumption
(DCA)

frame

production system

rule

production rule

production

antecedent
consequent

" enable

trigger

fire

conflict resolution

forward chaining

backward chaining

procedural representation
method

deductive database

axtensional database (EDB)

intensional database (IDB)

expert system

institutional memory

object-oriented programming
(OOP)

object model (OM)

reusability

black box approach

extendability

compatibility

object-oriented approach
(OOA).

object

message

method

class

instance

subclass

message interface

message protocol

addressability

identity

object identifier

class inheritance

multiple inheritance

object independence

partial inheritance

dynamic inheritance

16.1 Write the production rules for an expert system to help in advising a client of a bank as to

the type of account or accounts he or she should open.

16.2 Using the production rules of Figure E, show the order in which the rules will be fired in

758 Chapter 16 Current Topics in Database Research

easily enforced. Since the operations allowed on an object are encapsulated, its
intcractions with other objects are known and hence predictable. This allows
ease in extension of the system

® The inheritarice mechanism allows compact codes and the overnding features
allow localization of changes.

On the negative side are the following drawbacks of the OODBMS:

¢ Unlike the relational approach, which started out with a formal theory and a
framework for a query language, there is no formal or accepted framework of
OODBMS. This lack of a formal framework and query system means that the
development of OODBMS will most likely be Darwinian, with the most popular
becoming the de facto standard.

® Since each object is a self-contained unit, there is no means of showing
relationships among a number of objects. Interobject reference is used to show
such an association indirectly.

® Performance will likely be a problem. Techniques such as associative access
and architecture features such as tagged architecture have to be investigated.

® In traditional database systems the user must know what the schema contains,
such as names of relations and attributes, and pose queries and design programs
using this knowledge. In an OODBMS the user must know what each object
class is, as well as its methods, messages, and responses. This is not a light-
requirement® and may be the biggest stumbling block in the use of the object
approach unless an intelligent user interface is provided with the database.

@ Summary

In this chapter we defined a knowledge base system as a computer system used for
the management and manipulation of shared knowledge. We compared a knowledge
base system with a DBMS and pointed out the similarities and differences. We con-
sidered the different schemes uszd to represent knowledge: the semantic network,
first-order logic, rule-based system, frames, and procedural representation.

Expert systems are knowledge base systems wherein the knowledge of experts
in a limited domain of application is stored; this knowledge can be used by appro-
priate inference procedures to solve problems in the domain. The knowledge in ex-
pert systems is usually stored as rules. The expert system also generates explanations,
which can be employed to illustrate the rules used to answer a user query. Expert
systems use forward chaining or backward chaining in their inference procedures.

SIMULA, a programming language for computer simulation, ‘introduced the
concept of object class. Class in SIMULA is an abstract data type mechanism and
the object-oriented programming language is based on this concept (Gold 83). Ob-
jects can be considered uniform abstractions or representations of the storage and
manipulation capabilities of a computing system. The set of operations performed by

®A case in point is-the UNIX operating system. It started off with a lean and utilitarian system with very attractive feateres but
it has become a dinosaur. The online help facility is of no use to a novice and the manuals are too large and badly organized.

16.8 Object Databages 785

They are looking at five major areas: programming languages; concurrency control;
object-based management; software management; and user interface and -environ-
ment.

16.8 object Databases

In databases, we concern ourselves with the management and sharing of a large
amount of reliable and persistent data. The relational system is suitable for an ad hoc
query expressed in a query language such as SQL. However, such query languages
are not suitable for application development. The application development language
must be suitably integrated with the relational query language and should have a
similar model of the computation being performed. Unfortunately whereas relational
query languages are set oriented, application languages tend to be record oriented.
Object orientation, with the ability to treat everything as objects, including programs
and data, is therefore a promising avenue of research.

The object model and the object approacn have not been defined formally; con-
sequently a large number of systems can rightly claim to be using the object model.
The justification of the use of this approach in programming language is to provide
an increased degree of abstraction. In the area of OS there is a constant need to
reduce complexity in allowing concurrent tasks to share resources in an orderly man-
ner and to communicate with each other. In the DBMS, there is a need to model
complex entities such as CAD/CAM design data, office documents, and coauthored
articles.

Along with the lack of a clear, well-defined and accepted object model, there is
a lack of uniformity in the concept of an object-oriented database system. In a
DBMS, the relationship between two record types may be statically established or
based on the content. Relationships exist between classes-due to the hierarchical
structure and inheritance hetween subclass and superclass. In the object model, rela-
tionships may exist at object level via objects that know about each other and com-
municate via messages. However, content relationships between objects may not be
allowed if the object paradigm is to be preserved. In a database system, all record
instances share the same set of operations, which are implemented in the DBMS. In
the object model, each object has its own set of operations and can be tailored to the
object. However, to achieve efficiency, we use multiple inheritance,’ which creates
its own set of problems. Database record instances are accessed based on the con-
tents. In the object model, the contents of the object are encapsulated and not acces-
sible; therefore, the identifiers are the only means of externally identifying an object
instance.

Research projects in object databases can be classed as either an extension to
existing systems or as an object-oriented DBMS (OODBMS). In the latter, the data
model supports the object approach. ‘

Extension to Existing Systems

POSTGRES (Ston 86a) (Ston 86b), designed by Stonebraker and his colleagues,
extends the relational model by supportipg abstract data types and procedures. The
latter can be used to simulate objects.

754

Chapter 16 Current Topics in Database Research

Figure 16.14

Obijects in the university database.

R

| STUDENT

Class inheritance provides a method whereby a new class can be defined as a
subclass of an existing class. It inherits not only the operations of the parent class
but also its data structure (instance variable). It could be possible to add further data
structures and operations on these structures in the subclass.

In multiple inheritance a subclass is considered to have not one parent class
but multiple parent classes (Figure 16.15). Many of the OOP languages provide only
single (or simple) inheritance. In the case of multiple inheritance, there would be the
need to override one or more inherited methods and a method of resolving conflict
in names of operations or instance variables. Conflict resolution would be by explicit
disambuguation, default rules, or prefixing the name with that of the parent class.

If a class has to be modified in the presence of existing instances of objects of
the class and its subclasses, there is a need for some form of object independence.

In partial inheritance the subclass inherits only a subset of the data structures
and operations from the parent class and suppresses the remaining.

Class inheritance is a static mechanism. In dynamic inheritance, an object
changes its response to a message when it accepts new parts from other objects or
when it changes its environment. The latter concept is similar to a programming
language where the environment can be changed dynamically, as in PL/1. Similarly,
a given text changes its fonts when a new style gheet is attached to the document.

The direction of research and the very concept of an object depend on the roots
of the researcher. Researchers are discovering new ways to use the old concepts.

Figure 16.18 Example of multiple inheritance.

16.7 Object Approach 753

16.7.5

totally annihilated and no memory of such an object remains in some other object. If
such a memory remains in the system, we have a problem of dangling pointers,
which should not be allowed. The identifier of an object that ceases to exist may be
reassigned depending on the implementation.

Object identifiers are useful for implementation and allow users to perform tests
on the identity of an object. Nevertheless, they should not play a role in the model.

Object Class and Instantiation

16.7.6

As in traditional programming language, the notion of type is used to describe an
object. It consists of two parts: the data and operation parts and their implementa-
tions, and the interface to the object that is visible from the outside. The data and
the implementation of the operations on this data are private to the object. The op-
erations that are implemented cater to the specified interface of the object.

Traditional programming language provides a number of data types such as in-
tegers, character strings, bit strings, floating point numbers, and so forth. These can
be used as required by associating a name with an instance of this type. The instan-
tiation can be static at compile time or dynamic at run time depenaing on the features
provided by the language.

Similarly, in OOP, objects may be instantiated either statically at compile time
or dynamically at run time. There could exist more than one object that recognizes
and responds similarly to the same sét of messages. These objects of the same object
types are grouped together into a class of objects or simply as a class. Such objects
have the same type of private memory, which is referred to by their methods using
the same set of names. Each class has a name and is itself considered as an object
belonging to a special system-defined class.

The collection of a group of identical objects into a class allows the sharing of
common methods. The concept class thus groups together a set of externally visible
operations, a set of corresponding hidden methods, and a set of. private variables
belonging to instances of the objects of the class. A new instance of an object in a
class has its own private memory and shares the operations and the methods of the
class. '

Inheritance

In OOP, inheritance is used to allow différent objects to share attributes and methods.
One advantage of inheritance is lower development time due to program reusability.
In our university database (see Figure 16.14), The objects FACULTY and STU-
DENT are both specializations of the object PERSON and share some common traits.
They both have a Birthdate, an Address, a Home_Phone_Number, Next_of_Kin, and
so on. A number of operations could be performed on these items. For instance, one
of these items could be updated. The program to implement these operations could
be shared. Similarly, each of the objects STUDENT and FACULTY has certain
special attributes, i.e., Set_of_Grades for STUDENT and Salary for FACULTY.

752

Chapter 16 Current Topics in Database Research

116.7.3

Database and Identity

16.7.4

Databases emerged to resolve the storage problem and facilitate the sharing of per-
sistent objects. This required the support of the identity of an object not only in terms
of its representation but also over time.

Every object is unique. However, we cannot, for example, distinguish between
two 2d nails, nor do we bother to try. What is important for most applications is that
they are 2d nails as opposed to 3d nails. In modeling a definite object for a particular
application, we do not model all of its characteristics but only a subset of interest to
the application. This subset may not be sufficient to bring out the uniqueness of the
object. (For example, the 2d nails could have some characteristics that may identify
one nail uniquely from another.) We also use some means to characterize abstract
objects. It may also happen that the uniqueness of the object can only be established
as a result of the object’s relationship with another object.

Database systems use the concept of key attributes to distinguish individual rec-
ords or tuples (persistent objects). The data values of the key attributes are thus
mixed with the identity of the objects. This dictates that the value of the key attri-
butes cannot be modified, even though they are descriptive data or artificially intro-
duced data. The name of a department, for instance, is used as a key of the depart-
ment and also used as a foreign key in the employee relation (object) to establish the
relationship that an employee is assigned to a given department. Suppose the name
of a department changes as a result of reorganization or modemization, say, from
Quantitative Methods to Decision Science or from Personnel to Human Resources.
This causes the problem of updating in the department object and all others referring
to that object.

A change could be required in the choice of an identifier. Such a situation occurs
when preexisting databases having similar classes of objects with different identifiers
must be integrated. Two different divisions of a company, for instance, may use
different identifiers for identifying employees. One division may use a locally gen-
erated sequential employee number; the other may choose the Social Security. num-
ber. Another problem with this approach is that the individual attributes or any subset
of attributes of a relation lack an identity.

In the object-oriented approach, a separate consistent mechanism is used to iden-
tify an object regardless of the actual method used in modeling the object or the
attributes associated with the object (i.e., the descriptive data). An obiect system can
then be defined to be made up of objects. In a consistent object system no two
distinct objects have the same object identifiers, and for each existing object identifier
there is a corresponding object. Two objects, O; and O,, are identical if the identi-
fiers for the objects are identical.

Implementation of Object Identifiers

The object identifier is best implemented using a system-generated surrogate. Such
object identifiers, provided operations on them are allowed, need not be accessible
to a user. The question as to what to do with an object identifier when the corre-
sponding object ceases to exist is simply answered if the ‘object is considered to be

16.7 Object Approach 3 781

same thing. Everything 1s identical with itself and with nothing else. But despite its
simplicity, identity invites confusion. E.g. it may be asked: Of what use is the notion of
identity if identifying an object with itself is trivial and identifying with anything else is
false?’

Having defined objects still leaves open the question of the ability to distinguish
objects from each other. This ability must be distinct from the state of the object or
its location and at the same time allow different objects to be shared. When talking
of identifying something, we do nct necessarily mean locating a name, but the object
associated with the name.

Addressability is a scheme of locating an object or providing access to an ob-
ject and is dependent on the environment. Consider Professor Smith. Her students
address her in a way that is different trom the way her children do, which in turn is
different from the way her friends and acquaimances address her. However, Profes-
sor Smith is the same person and she knows it!

Addressability is external to an object. Consider the method used in FORTRAN
to access a file. A file number is mapped into a logical file name, which is mapped
into a physical file name and a physical file. The file has an identity of its own,
which is compared to the puysical file name to ensure that the correct file-1s accessed.
This highlights the concept that identity is internal to the object.

Programming languages use variable names to distinguish objects, which last
for the duration of the execution of the program or portion thereot Such variable
names are defined by users to represent the identity of an object. An object required
by more than one program module is made global among these modules. The binding
of an object, which in this case is a storage location in real or virtual memory, is
done either at compilation time or run time. If the same program is rerun the same
variable is used over again for the same purpose; this fact xeeps us from realizing
that these objects are only temporary. The addressing of an object is thus merged
with the identity of the corresponding object. Objects that persist over different exe-
cutions of a program or that are passed from one program to another use a file
system.

The use of variable names without some built-in representation of identity and
operator to test and manipulate this abstraction can cause problems. This is the case
when the same transient objects are referred to by different variable names and ac-
cessed in different ways. The concept of COMMON in FORTRAN is used to share
objects among different program units and could refer to the same object, such as
storage location in real or virtual memory, using different variable names ‘with pos-
sibly different data types. This creates a great number of errors that are hard to
detect. The concept of EQUIVALENCE allows objects to be shared among variables
of the same program module. Without a test for establishing the identity of the ob-
ject, a problem is created. Pascal addressed this problem by introducing the variant
record type. Smalltalk provides a simple identity test expression of the form X = =
Y. where two variables, X and Y, are tested to determine if their identity is the
same

'W. V. Quine, Methods of Logic, 4th ed. Cambridge: Harvard University Press, 1982.

LIANGALOBE |

575 601.

